Две непересекающиеся прямые

Когда пересекаются параллельные прямые

Две непересекающиеся прямые

Из школьного курса геометрии каждому человеку известно, что параллельными именуются прямые, которые не имеют общей точки. Однако это простое утверждение почему-то изредка опровергается различными знакомыми, которые доказывают, что коллинеарные линии могут пересекаться.

В реальности, геометрия Евклида, которую преподают в школе не единственный вариант этой науки. При более конкретном исследовании выясняется, что пересечение параллельных прямых зависит от формы поверхности, на которой они проведены.

Рассмотрим несколько различных вариантов геометрий, принципиально отличающихся друг от друга.

Геометрия Евклида

Евклид. Источник изображения: istock.com

Это привычная всем геометрия, имеющая историю в не одну тысячу лет. Ее начала были известны еще в Древнем Египте, а аксиомы (постулаты, утверждения) были сформулированы в Древней Греции выдающимся математиком древности Евклидом. Все его утверждения не вызывали сомнений, кроме пятого.

Это утверждение показывало, что через точку, лежащую вне прямой, есть возможность провести единственную прямую коллинеарную заданной. Коллинеарные прямые в этом случае не пересекаются. Сумма внутренних углов треугольника равна двум прямым углам. Однако попытки математически доказать 5 постулат Евклида упирались в порочный круг.

Однако житейский опыт дает возможность не совсем верить в справедливость утверждения, что параллельные прямые не пересекаются – если смотреть на ровное железнодорожное полотно, то будет впечатление, что где-то вдалеке параллельные рельсы сойдутся в одну точку. То же самое касается и лучей идущих от точечного источника – тени от разных предметов параллельны, но оставившие их лучи вышли из одной точки.

Приведенные выше рассуждения дали возможность создать проективную геометрию, которая дополняет привычную Евклидову прямую бесконечно удаленной точкой, а на плоскости появляется прямая бесконечно удаленных точек. Вот на этой прямой и пересекаются все коллинеарные прямые.

Геометрия Лобачевского

Николай Иванович Лобачевский. Источник изображения: wikipedia.org

В 19 веке Николай Иванович Лобачевский, а также немец Гаусс и венгр Больяи, предложили геометрию, в которой имеются минимум 2 прямые коллинеарные заданной.

Эти прямые пересекаются между собой и приближаются к заданной прямой с двух различных направлений. Место их пересечения с заданной прямой находится в бесконечно удаленной точке.

Прямые, которые пересекаются с заданной прямой еще дальше, называются сверхпараллельными.

Наглядно это можно представить, если изобразить плоскость, как овал, и провести внутри него прямую. Линия границы овала будет представлять в таком варианте прямую бесконечно удаленных точек.

Затем вне данной прямой зафиксируем точку и проведем через нее 2 прямые, пересекающие заданную на границе овала (то есть на прямой бесконечно удаленных точек). Эти 2 прямые и будут называться параллельными.

Те же прямые, которые пересекаются с данной прямой за пределами овала окажутся сверхпараллельными.

Согласно последним научным данным, геометрия Лобачевского имеет место в реальной природе вблизи крупных тяготеющих масс, где само пространство перестает быть плоским и получает кривизну. Сумма углов треугольника в этом варианте не достигает 180 градусов.

Сферическая геометрия и геометрия Римана

Гео́рг Фри́дрих Бе́рнхард Ри́ман — немецкий математик, механик и физик. Источник изображения: wikipedia.org

Тоже в 19 веке немец Риман по-своему проанализировал 5 утверждение Евклида и предположил, что коллинеарных прямых нет в принципе.

На основании своего предположения Риман создал геометрию, в которой у всех прямых имеется общая точка, а сумма углов треугольника превышает 180 градусов. Нет в геометрии Римана и понятия, что точка лежит между двумя другими точками.

Но это вполне реальная с математической точки зрения геометрия.

https://www.youtube.com/watch?v=gDHBwH5SQH0

Объяснить римановскую геометрию на доступном примере сложно, поэтому имеет смысл обратиться к близкой к ней по множеству характеристик сферической геометрии (правда, здесь параллельные прямые пересекаются сразу в 2 точках).

параллели и меридианы. Источник изображения: m-globe.ru

Рассмотрим в качестве сферы нашу планету Земля. Как одну из прямых возьмем экватор, а в качестве коллинеарных между собой прямых будем считать меридианы.

Они коллинеарны друг относительно друга, поскольку пересекают экватор под прямым углом (углом между пересекающимися линиями в математике является угол между их касательными, проведенными в точке пересечения данных линий).

Однако известно, что меридианы пересекаются на полюсах.

(1) евклидова геометрия; (2) геометрия Римана; (3) геометрия Лобачевского. Источник изображения: wikipedia.org

Общим выводом, ради которого была написана статья, является утверждение, что нельзя достоверно сказать, пересекаются параллельные прямые или нет, если дополнительно не указывать, какой из видов геометрии имеется в виду.

Если вам понравилась статья, то поставьте лайк и присоединяйтесь к более, чем 20 000 подписчикам каналаНаучпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник: https://zen.yandex.ru/media/id/5af18cff8c8be36795a8504e/5c80bcc7146cc100aff5c8b7

Параллельные прямые, признаки и условия параллельности прямых

Две непересекающиеся прямые

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Параллельные прямые: основные сведения

Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥. Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b. Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b, или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10-11 классов).

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7-9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е.

, чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д.

Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a→=(ax, ay) и b→=(bx, by) являются направляющими векторами прямых a и b;

и nb→=(nbx, nby) являются нормальными векторами прямых a и b, то указанное выше необходимое и достаточное условие запишем так: a→=t·b→⇔ax=t·bxay=t·by или na→=t·nb→⇔nax=t·nbxnay=t·nby или a→, nb→=0⇔ax·nbx+ay·nby=0, где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A1x+B1y+C1=0; прямая b  – A2x+B2y+C2=0. Тогда нормальные векторы заданных прямых будут иметь координаты (А1, В1) и (А2, В2) соответственно. Условие параллельности запишем так:

A1=t·A2B1=t·B2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y=k1x+b1. Прямая b – y=k2x+b2. Тогда нормальные векторы заданных прямых будут иметь координаты (k1, -1) и (k2, -1) соответственно, а условие параллельности запишем так:

k1=t·k2-1=t·(-1)⇔k1=t·k2t=1⇔k1=k2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны.

И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x-x1ax=y-y1ay и x-x2bx=y-y2by или параметрическими уравнениями прямой на плоскости: x=x1+λ·axy=y1+λ·ay и x=x2+λ·bxy=y2+λ·by.

Тогда направляющие векторы заданных прямых будут: ax, ay и bx, by соответственно, а условие параллельности запишем так:

ax=t·bxay=t·by

Разберем примеры.

Пример 1

Заданы две прямые: 2x-3y+1=0 и x12+y5=1. Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x12+y5=1⇔2x+15y-1=0

Мы видим, что na→=(2, -3) – нормальный вектор прямой 2x-3y+1=0, а nb→=2, 15- нормальный вектор прямой x12+y5=1.

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t, при котором будет верно равенство:

2=t·2-3=t·15⇔t=1-3=t·15⇔t=1-3=15

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y=2x+1и x1=y-42. Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x1=y-42 к уравнению прямой с угловым коэффициентом:

x1=y-42⇔1·(y-4)=2x⇔y=2x+4

Мы видим, что уравнения прямых y = 2x + 1 и y = 2x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2x + 1, например, (0, 1), координаты этой точки не отвечают уравнению прямой x1=y-42, а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2x + 1 это вектор na→=(2, -1), а направляющий вектором второй заданной прямой является b→=(1, 2). Скалярное произведение этих векторов равно нулю:

na→, b→=2·1+(-1)·2=0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности.

Иначе говоря, если a→=(ax, ay, az) и b→=(bx, by, bz)являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t, чтобы выполнялось равенство:

a→=t·b→⇔ax=t·bxay=t·byaz=t·bz

Пример 3

Заданы прямые x1=y-20=z+1-3 и x=2+2λy=1z=-3-6λ. Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a→ и b→ заданных прямых имеют координаты: (1, 0, -3) и (2, 0, -6).

Так как:

1=t·20=t·0-3=t·-6⇔t=12, то a→=12·b→.

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/parallelnye-prjamye-priznaki-i-uslovija-parallelno/

Поделиться:
Нет комментариев

Добавить комментарий

Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.